
 

OpenThread Quality Dashboard 
Provided by OpenThread 

Version 1.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

Table of Contents 
 

Table of Contents 1 

Revision History 2 

Purpose 3 

Overview 3 

Topology and Testbed 4 

Latency 4 

Methodology and Procedure 5 

Results 6 

Examples 6 

Overview of Reference Release Commit 9 

Loss Rate 9 

Methodology and Procedure 9 

Results 10 

Examples 10 

Overview of Reference Release Commit 11 

Throughput 11 

Methodology and procedures 11 

Results 13 

Examples 13 

Overview of Reference Release Commit 14 

Summary 15 
 

 

1 



 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

Revision History 
 

Date Version Descriptions 

Feb 12, 2019 Version 1.0 Initial version. Introduction of OpenThread Quality Dashboard 

 

  

2 



 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

1. Purpose 
OpenThread Quality Dashboard, owned and maintained by the Google OpenThread Team, 
shows the quality of OpenThread iteratively along with the development on GitHub. OT Quality 
Dashboard comprises two sub-Dashboards: Certification and Performance. 

The conformance with the Thread Specification and the interoperability with other Thread stack 
vendors are evaluated by the Thread Test Harness and are presented in Certification 
Dashboard. Please refer to https://openthread.io/certification for more information about 
certification.  

OpenThread Performance Dashboard (“OT Perf Dashboard”) illustrates the performance 
metrics of OpenThread as a wireless networking protocol implementation. This document 
serves as a supplement and introduces: 

● Test methodology for each performance metric 
● How to interpret the OT Perf Dashboard  
● Performance summary under an OpenThread reference release commit 

The results of reference release commit 55bf9fc2 will be taken as a benchmark for further 
regular regression. 

This document will be updated as new metrics and scenarios are added to OT Perf Dashboard. 
Refer to https://openthread.io/testing/quality-dashboard for the most up-to-date and detailed 
performance/certification results. 

2. Overview 
OpenThread performance is evaluated across a variety of metrics. The test environment, 
methodology, and summary of the results are covered under the following metrics and use 
cases: 

● Metrics 

● Latency 

● Loss Rate 

● Throughput 

● Topology 

● 12-node, 2-cluster, conductive with attenuators 

Ideally, performance should be evaluated across a number of different use cases and 
deployment scenarios. This is an initial step to demonstrating the OT Perf Dashboard platform. 
Over time, additional use cases and network topologies will be included in the OT Quality 
Dashboard. 

3 

https://github.com/openthread/openthread
https://graniteriverlabs.com/thread/
https://openthread.io/certification
https://github.com/openthread/openthread/commit/55bf9fc2fe5455f60ee05fe63de07f2bc3d01b58
https://openthread.io/testing/quality-dashboard


 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

3. Topology and Testbed 
The system under test is composed of 12 nodes, which form a 2-cluster topology. The nodes in 
each cluster are connected completely, and the two clusters are connected together by only one 
link. All nodes are Routers (including the Leader) in the Thread network. The performance 
metrics introduced in Sections 4 - 6 are all tested using this topology, shown in Figure 3.1.  

 

Figure 3.1 Topology of 12-node, 2-cluster 
 

The devices compliant with OpenThread (“OT device”) are deployed as the topology in the 
testbed. The deployment of OT devices connected with cables, attenuators, and splitters is 
illustrated in Figure 3.2.  More specifically, all the results delivered in the OT Perf Dashboard are 
using nRF52840 PDKs as the OT devices in the testbed. The testbed is not limited to a specific 
platform, correspondingly it applies to all kinds of OT devices. 

In this testbed, one GPIO pin from each OT Device is connected to a 1-wire bus. The 
performance metrics introduced in Sections 4 - 6 are all tested using this testbed. The usages of 
the testbed for each use case are different, as detailed in the procedures. 

 
Figure 3.2 Testbed deployment 

4 



 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

4. Latency 
Latency tests measure and analyze latency metrics over 1, 2, and 3 hop(s) with different UDP 
payload sizes.  

4.1. Methodology and Procedure 
In order to get accurate latency, GPIOs are used to synchronize events across the testbed. A 
GPIO interrupt, which is triggered at the packet source, will reach all the devices at the same 
time and trigger the devices in RX state to record the packet sent time. Latency is then 
measured by computing the difference between received and sent timestamps. An example 
GPIO interrupt time sequence is shown in Figure 4.1. Each UDP packet is tagged with an 
identifying sequence ID to make sure the measurement is correct. 

 

 
Figure 4.1 Accurate latency time sequence 

 

Unicast Latency tests are performed for each pair of nodes. Detailed procedures of the tests are 
listed in Table 4.1. 

Table 4.1 Unicast latency test steps 

Step Device Description 

1 All Connect GPIO pins of all Nordic dev boards together using 
dupont lines. 

2 All Verify topology is formed correctly. 

3 Device 1 Select Device 1 as the source. 

4 Device 2 Select Device 2 as the destination. 

5 Device 1 Send a stream of frames with the P (P = 64) bytes UDP payload 
size. 

5 



 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

6 Device 1 Output a GPIO signal when sending the frame. 

7 Device 2 Record the timestamp A when the GPIO interrupt triggered. 

8 Device 2 Receive the UDP packet with the identifying tag from the Device 
1 and record the timestamp B. 

9 Device 2 Calculate the one-way latency by (B-A). 

10 Device 1 , Device 2 Repeat above Step 5 ~ 9 with T ms  (T = 500)  for N times (N = 
50) 

11 Device 1, Device 2 Repeat Step 5 to Step 10 with different UDP payload size 
PN(PN = 128, 256, 512) bytes. 

12 Device 1 , Device X 
(X = 3, 4, …, 12) 

Repeat Step 5 to Step 11 with Device X as the destination, 
respectively. 

13 Device X  
( X = 2, 3, …, 12), 
Device Y  
(Y = 1, 2, …, 12 and 
Y != X) 

Repeat Step 4 to Step 12 with Devices X as the source, and Y 
as the destination respectively. 

14 All Collect statistics (Min, Max, Avg, mode, median, 90%*) of 
latency over 1, 2, and 3 hop links with different payload sizes. 
(Note *: At least 90% packets are received within * ms). 

 

4.2. Results 
Latency test results are analyzed by number of hops, payload size, historical commits, etc. The 
summary of latency test results is found on the main Performance Dashboard page. The 
following sections will give typical examples on how to interpret the visualized results and the 
overview of the reference release commit. 

4.2.1. Examples 
A Cumulative Distribution Function (CDF) is used to show the latency distribution of all received 
packets, revealing the summary and a general picture of the latency performance. The latest 
commit is highlighted in red, compared with historical results (reference release commit 
55bf9fc2). The differences between the latest commit and the baseline can be seen at first 
glance. It is helpful to visualize any change in performance of different hops and payload size. 

Take CDF for Unicast Latency of a 64-byte payload in Figure 4.2 as an example. We can see 
that: 

6 

https://openthread.io/testing/performance-dashboard
https://github.com/openthread/openthread/commit/55bf9fc2fe5455f60ee05fe63de07f2bc3d01b58


 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

● The latest latency curve nearly overlaps with the release commit, which illustrates 
minimal change in performance. 

● The latency range of a 64-byte payload size for 1 hop is approximately 5~8 ms. 

Precise metric numbers can be found in the following paragraphs. 

 

 

Figure 4.2 CDF for unicast latency [64-byte payload size] 
 

The detailed latency results could be found on the Average Latency page of OT Perf 
Dashboard. Average unicast latency (ms) of different commits is shown in Figure 4.3.  

7 

https://openthread.io/testing/performance-dashboard/average-latency


 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

 

Figure 4.3 Average unicast latency [64-byte payload size] 

 

The CDF for unicast latency of each node is shown in Figure 4.4, which helps to identify 
potential problems in this run by providing results of different nodes as source and destination 
respectively.  

 

8 



 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

 

Figure 4.4 CDF for unicast latency of each node [64-byte payload size] 

 

In Table 4.2, latency detail analysis includes the following statistics value for each hop: average, 
median, mode, minimum, maximum, and 90th percentile, which means at least 90% packets are 
received within a certain time period.  

Table 4.2 Unicast latency (ms) of commit 55bf9fc2 [64-byte payload size] 

Hop Average Median Mode Min Max 90%* 

1 6.01 5.92 5.2 4.852 16.967 7 

2 12.62 12.573 13.2 10.315 29.816 14 

3 18.98 18.982 19 15.534 30.06 20 

 

9 

https://github.com/openthread/openthread/commit/55bf9fc2fe5455f60ee05fe63de07f2bc3d01b58


 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

4.2.2. Overview of Reference Release Commit 
The latency test overview of different payload size and hops for the reference release commit 
(55bf9fc2) are shown in Figure 4.5. All the results are summarized from data on the OT Perf 
Dashboard, from which we can see: 

● For a payload size of 64 bytes for 3 hops, latency is maintained at less than 20 ms. This 
case is the most common application where the payload is without fragmentation and 
hops are within 3 hops. 

● For 512 bytes, 1 hop, the latency is under 40ms; up to 3 hops for 512 bytes, latency is 
around 130 ms which is less than the 200 ms often desired for human interaction with 
the devices. 

 

 

(a) (b) 

Figure 4.5 Average unicast latency varying with (a) payload size, (b) hops  

5. Loss Rate 

5.1. Methodology and Procedure 
Packet loss is measured at the same time during the latency tests. Destination devices will not 
record the received timestamp if a packet has been lost. The loss rate is calculated over 1, 2, 
and 3 hop(s) with different UDP payload sizes. Packets loss rate is tested using the same 
topology with latency test as well, refer to Figure 3.1. 

5.2. Results 
The summary of loss rate result is found on the main Performance Dashboard page. The 
following sections will give typical examples on how to interpret the visualized results and the 
overview of the reference release commit. 

10 

https://github.com/openthread/openthread/commit/55bf9fc2fe5455f60ee05fe63de07f2bc3d01b58
https://openthread.io/testing/performance-dashboard


 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

5.2.1. Examples 
The CDF figure (Figure 4.2) presents an overview: The loss rate of latency packet is 0 as the 
cumulative distribution reaches 100%. 

Packet Loss Rate for every connection is shown in detail in Figure 5.1. All the packets are 
received without packet loss between each pair of nodes, which is consistent with Figure 4.2. 

 

Figure 5.1 Packet loss rate of unicast latency [64-byte payload size] 

 

The boxes of packet loss rate are marked with green / yellow / red to illustrate health / warning / 
error: 

● < green >: lose rate < 0.1  
● < yellow >: 0.1 =< lose rate < 0.2  
● < red >: lose rate >= 0.2 

The boxes are also marked with hatching to illustrate hops: 

● < null > = 1 hop 
● < ' | ' > = 2 hops 
● < ' / ' > = 3 hops 

 

11 



 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

5.2.2. Overview of Reference Release Commit 
The loss rate overview for the reference release commit (55bf9fc2) is shown in Table 5.1. All the 
results are summarized per data on the OT Perf Dashboard, from which we could see:  

● Packet loss rate is 0% under typical UDP payload size: 64, 128, 256, and 512 bytes for 
hops 1~3. 

Table 5.1 Summary of Packet loss rate 

Hop 

Packet loss rate of different payload size (Bytes) 

64 128 256 512 

1 0% 0% 0% 0% 

2 0% 0% 0% 0% 

3 0% 0% 0% 0% 

 

6. Throughput 

6.1. Methodology and procedures 
Throughput is tested by sending UDP packets of different payload sizes using the testbed 
shown in Figure 3.2. The source will send UDP packets at the target bandwidth. The target 
bandwidth increases until the loss rate goes beyond a certain threshold at the destination. An 
example of throughput traffic flow is shown in Figure 6.1. 

 
 Figure 6.1 Traffic flow 

 
Throughput tests are performed for every possible connection between any two nodes. Detailed 
procedures of the tests are listed in Table 6.1. 

Table 6.1 Throughput test steps 

Step Device Description 

1 All Verify topology is formed correctly. 

12 

https://github.com/openthread/openthread/commit/55bf9fc2fe5455f60ee05fe63de07f2bc3d01b58


 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

2 Device 2 Set Device 2 as the source. 

3 Device 1 Set Device 1 as the destination. 

4 Device 2 Send frames with the N (N = 64) bytes payload size UDP 
packet at A (A = 10) kbps to the destination for a period of 
time T seconds (T = 11). Packets are sent at an even 
interval. 

5 Device 1 Count the frames that are received from the source.  
Get the packet loss ratio L,  
     L = (Nsent frames - Nreceived frames) / Nsent frames  
If L <= P (P = 10%): 
    Go to Step 6;  
else: 
    Go to Step 7.  

6 Device 2 Bi = A + S 
(S <= 20kbps, adaptive according to payload size and hops) 
Send frames lasting for T time with the N bytes UDP payload 
size at the expected bandwidth Bi kbps; 
A = Bi   
Go to Step 5. 

7 Device 1, 2 Stop sending packets and obtain the value of A, the 1 hop 
throughput is A * (1 - L) 

8 Device 1, 2 Repeat Step 5 to Step 7 with different UDP payload size PN 
(PN = 128, 256, 512) bytes. 

9 Device 1 , Device X 
(X = 3, 4, …, 12) 

Select Device X as the source, repeat Step 3 to Step 8 to 
measure the throughput. 

10 Device X  
( X = 2, 3, …, 12), 
Device Y  
(Y = 1, 2, …, 12 and 
Y != X) 

Repeat Step 4 to Step 9 with Devices X as the source, and Y 
as the destination respectively. 

 

6.2. Results 
The summary of throughput result is found on the main Performance Dashboard page. The 
following sections will give typical examples on how to interpret the visualized results and the 
overview of reference release commit. 

 

13 

https://openthread.io/testing/performance-dashboard


 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

6.2.1. Examples 
Throughput test results are analyzed by hops, payload size, historical commits.  

The throughput summary figure plots the achieved throughput relative to the data rate. The 
throughput of the latest commit is highlighted in red to compare with historical results in blue 
(reference release commit 55bf9fc2). This figure provides a general picture of throughput 
performance, with differences between the latest commit and the baseline easily discernible, 
and provides a visual comparison of performance for different hops and payload size. 

Take the throughput summary of a 64-byte payload, as shown in Figure 6.2. The plot shows the 
achieved throughput relative to data rate. The latest throughput curve nearly overlaps with the 
release commit, which illustrates minimal change in the throughput results. 

From this figure we can see that:  

● The throughput value of a 64-byte payload size for 1 hop is 90 kbps. 
● The throughput has not decreased even though the sent bandwidth greatly exceeded 

the received bandwidth. 

 

14 

https://github.com/openthread/openthread/commit/55bf9fc2fe5455f60ee05fe63de07f2bc3d01b58


 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

 

Figure 6.2 Throughput summary: comparison of latest and historical commits 
 [64-byte payload size] 

 
 

6.2.2. Overview of Reference Release Commit 
The throughput overview for the reference release commit (55bf9fc2) are shown in Figure 6.3. 
All the results are summarized from data on the OT Perf Dashboard, from which we see:  

● For the payload size of 64, 128, 256, 512 bytes, throughput results for 1 hop are in range 
of 90 kbps ~ 108 kbps. 

● Throughput and latency results are consistent under mutual conversion for each payload 
size and hop. 

15 

https://github.com/openthread/openthread/commit/55bf9fc2fe5455f60ee05fe63de07f2bc3d01b58


 

OpenThread Quality Dashboard v1.0 

Feb, 2019 

Note: Use formula “Throughput_conversion = 1000 /Latency(ms) * Payload Size (Bytes) * 8”. Take 512B, 1 hop as an example. Refer 
to latency results in Figure 4.5, Latency = 38.6 ms, Throughput_conversion = 106.1 bps. Throughput_conversion is consistent with 
the real output Throughput.  

 

 
Figure 6.3 Throughput under different payload size and hops 

 

7. Summary 
● OT Perf Dashboard provides latency, loss rate, and throughput metrics in a typical 

topology for various payload sizes and hops. 
● OT Quality Dashboard will be updated periodically and continuously based on the 

OpenThread master branch. 

16 


